DIFFERENT TYPES OF CHROMATOGRAPHIC COLUMNS

Image

                                                                             DIFFERENT TYPES OF CHROMATOGRAPHIC COLUMNS

Chromatography is an analytical technique that separates components in a mixture. Chromatographic columns are part of the instrumentation that is used in chromatography. Five chromatographic methods that use columns are gas chromatography (GC), liquid chromatography (LC), Ion exchange chromatography (IEC), size exclusion chromatography (SEC), and chiral chromatography.

1. Gas Chromatographic Columns

In gas chromatography the mobile phase is a gas. Gas chromatographic columns are usually between 1 and 100 meters long.  In Gas liquid chromatography (GLC), the liquid stationary phase is bonded or adsorbed onto the surface of an open tubular (capillary) column, or onto a packed solid support inside the column. Matching the polarities of the analyte and stationary phase is not an exact science. The two should have similar polarities. The thickness of the stationary phase ranges between 0.1 and 8 µm. The thicker the layer the more volatile the analyte can be.

2. High Performance Liquid Chromatographic Columns

Usually HPLC has a guard column ahead of the analytical column to protect and extend the life of the analytical column. The guard column removes particulate matter, contaminants, and molecules that bind irreversibly to the column. The guard column has a stationary phase similar to the analytical column.

The most common HPLC columns are made from stainless steel, but they can be also made out of thick glass, polymers such as polyetherethelketone, a combination of stainless steel and glass, or a combination of stainless steel and polymers. Typical HPLC analytical columns are between 3 and 25 cm long and have a diameter of 1 to 5 mm. The columns are usually straight unlike GC columns. Particles that pack the columns have a typical diameter between 3 to 5 µm. Liquid chromatographic columns will increase in efficiency when the diameter of the packed particles inside the column decreases.

3. Ion Exchange Chromatographic Columns

Ion exchange columns are used to separate ions and molecules that can be easily ionized. Separation of the ions depends on the ion's affinity for the stationary phase, which creates an ion exchange system. The electrostatic interactions between the analytes, mobile phase, and the stationary phase, contribute to the separation of ions in the sample. Only positively or negatively charged complexes can interact with their respective cation or anion exchangers. Common packing materials for ion exchange columns are amines, sulfonic acid, diatomaceous earth, styrene-divinylbenzene, and cross-linked polystyrene resins. Some of the first ion exchangers used were inorganic and made from aluminosilicates (zeolites). Although aluminosilicates are not widely used as ion exchange resins used.

4. Size Exclusion Chromatographic Columns

Size Exclusion Chromatographic columns separate molecules based upon their size, not molecular weight. A common packing material for these columns is molecular sieves. Zeolites are a common molecular sieve that is used. The molecular sieves have pores that small molecules can go into, but large molecules cannot. This allows the larger molecules to pass through the column faster than the smaller ones. Other packing materials for size exclusion chromatographic columns are polysaccharides and other polymers, and silica. The pore size for size exclusion separations varies between 4 and 200 nm.

5. Chiral Columns

Chiral columns are used to separate enantiomers. Separation of chiral molecules is based upon stereochemistry. These columns have a stationary phase that selectively interacts with one enantiomer over the other. These types of columns are very useful for separating racemic mixtures.